Random integral matrices: universality of surjectivity and the cokernel

نویسندگان

چکیده

For a random matrix of entries sampled independently from fairly general distribution in $${{\mathbf {Z}}}$$ we study the probability that cokernel is isomorphic to given finite abelian group, or when it cyclic. This includes linear map between integer lattices by surjective. We show these statistics are asymptotically universal (as size goes infinity), precise formulas involving zeta values, and agree with distributions defined Cohen Lenstra, even very distorted. Our method robust works for Laplacians digraphs sparse matrices an entry non-zero only $$n^{-1+\varepsilon }$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality of Wigner Random Matrices

We consider N×N symmetric or hermitian random matrices with independent, identically distributed entries where the probability distribution for each matrix element is given by a measure ν with a subexponential decay. We prove that the local eigenvalue statistics in the bulk of the spectrum for these matrices coincide with those of the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Universality of some models of random matrices and random processes

Many limit theorems in probability theory are universal in the sense that the limiting distribution of a sequence of random variables does not depend on the particular distribution of these random variables. This universality phenomenon motivates many theorems and conjectures in probability theory. For example the limiting distribution in the central limit theorem for the suitably normalized su...

متن کامل

Bulk universality of sparse random matrices

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. We consider the adjacency matrix of the ensemble of Erd˝ os-Rényi random graphs which consists of graphs on N vertices in which each edge occurs independently with probability p. We prove that in the regime pN ≫ 1, these matrices exhibit bulk universality in the sense tha...

متن کامل

Random Matrices: Universality of Esds and the Circular Law

Given an n× n complex matrix A, let μA(x, y) := 1 n |{1 ≤ i ≤ n,Reλi ≤ x, Imλi ≤ y}| be the empirical spectral distribution (ESD) of its eigenvalues λi ∈ C, i = 1, . . . n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD μ 1 √ n An of a random matrix An = (aij)1≤i,j≤n where the random variables aij − E(aij) are iid copie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2021

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-021-01082-w